

Evaluating Arctic clouds representation in two global atmospheric models with DARDAR: focus on clouds in an Arctic cyclone

M. WIMMER^{1,2}

C. AUBRY^{3,4}, G. RIVIERE², J. DELANOË³, É. VIGNON², L. RAILLARD², É. BAZILE⁵, L. HOFMANN⁶

¹ CNES, ² LMD-CNRS, ³ LATMOS, ⁴ DLR, ⁵ CNRM (Météo-France – CNRS), ⁶ CEA

Evaluation of cloud parameterization using satellite products

Many studies on evaluation of cloud parameterizations by comparing to satellite/field campaign

Focus on Arctic clouds :

- Comparison of surface radiation, TWC, CF, IWC, LWC between IFS+UM and CloudNet during Arctic Ocean 2018 expedition (Young et al (2022))
- Comparison of annual cloud cover and vertical distribution of clouds between MMF and Radar-Lidar Geometrical Profile Product (Li et al (2019))
- Fitting of time scale and INP in Nordic Earth System Model V2_ to adjust liquid/ice partition function using CALIOP (Shaw et al. (2022))

Uncertainty on the liquid/ice partition function

Liquid/Ice partition function in mixed-phase clouds:

- Allows supercooled liquid water at negative temperature
- Generally only depends on temperature
- Different functions for each model
- Error in supercooled liquid water generate precipitation and temperature bias in polar region (Pithan et al. (2014), ...)

Uncertainty due to liquid/ice partition function:

- Mazoyer et al (2023)
- Ricaud et al. (2020)

Problem:

supercooled liquid water occurrence not linked only to temperature

Objective:

• find and test other predictors of supercooled liquid water using active remote sensing technics

Observations: DARDAR products

- IWC, LWC
- Hydrometeores categorization

Radar:

- Sensitive to diameter of particules ٠
- Detects ice cristals ٠
- Use to determine IWC ٠

Lidar:

- Sensitive to concentration of small particules ٠
- Detects small cristals and liquid droplets ٠
- Use to determine LWC and IWC ٠

Atmospheric models

ARPEGE (NWP model)

<u>Resolution</u>: 5-24km, 105 levels <u>Initialisation</u>: 4DVar analysis <u>Type of simulation</u>: "Free" Forecast <u>Version</u>:

- Operational
- Modified FONICE as in Ricaud et al (2020)

Outputs:

- time: 3h
- Lon x Lat : 0,5° x 0,5°
- 18 pressure levels (50hPa resolution)

LMDZ (climate model)

<u>Resolution</u>: Zoom configuration with 50km in Svalbard, 95 levels <u>Initialisation</u>: ERA5 <u>Type of simulation</u>: nudging to ERA5 outside the zoom with COSP simulator <u>Version</u>:

- CMIP7.1b version
- Liquid/ice partition function: $f(T, d_{top})$

Study Case: Arctic Cyclone in May 2019

- Born: 2019-05-09 in Russia
- End: 2019-05-16 near Svalbard
- Characteristics:
 - Long life
 - Brings humidity in Arctic Area
- Data:
 - Availability of satellites products and model simulation
 - 18 overpasses of CloudSat and CALIPSO
 - Simulation initial time: 20190512 at 0UTC

Minimum of MSLP during the Arctic cyclone trajectory (ERA5 data)

Example of one satellites overpass: #2019133004652_69455 crossing warm and cold front

Shading: θ_{E} at 850hPa (K) ; black contours: MSLP (hPa) ; white line: time along satellites overpass

Shading: Hydrometeors categorization ; black contours: Temperature (°C) ; red contours: θ_E (K)

Shading: IWC (g.m⁻³) ; black contours: Temperature (°C) ; red contours: $\theta_E(K)$

Shading: LWC (g.m⁻³) ; black contours: Temperature (°C) ; red contours: $\theta_E(K)$

Over-representation of ice in mid-troposphere in observation

Observations:

Keep data only where there are signals from radar and lidar simultaneously, namely:

Over-representation of ice in mid-troposphere in observation

Observations:

Keep data only where there are signals from radar and lidar simultaneously, namely:

Models (ex: LMDZ CTRL):

Delete data where:

- COSP : Z < -28 dBZ and $bscat < 1 \times 10^{-7} m^{-1} sr^{-1}$
- w/o COSP : $IWC < 5 \times 10^{-2}g.m^{-3}$ and $LWC > 1 \times 10^{-1}g.m^{-3}$

2 06

2.08

Time (h)

2.10

2.12

Comparison of mixed-phase and ice occurrences

mask on water content

Shading: Hydrometeors categorization ; black contours: Temperature (°C) ; red contours: θ_E (K)

Ice/liquid partition function on occurrence: according to temperature and distance to cloud top

Statistics on all satellite overpasses Mask on water content

Under-estimation at T< -40°C Under-estimation at - 15°C <T< 0°C and 0m<d<600m Over-estimation at - 15°C <T< 0°C and 600m<d<2000m No dependence on d

Ice/liquid partition function on occurrence: according to temperature and distance to cloud top

Statistics on all satellite overpasses Mask on water content

Under-estimation at T< -40°C Under-estimation at - 15°C <T< 0°C and 0m<d<600m Over-estimation at - 15°C <T< 0°C and 600m<d<2000m No dependence on d

Comparison of IWC_{in}

Modification of liquid/ice partition function:

- ARPEGE : IWC decreases
- LMDZ : IWC increases
- True for 18 satellite overpasses

Shading: IWC (g.m⁻³); black contours: Cloud Fraction (%) at 2019-05-13 OUTC

Comparison of LWC_{in}

Shading: LWC (g.m⁻³); black contours: Cloud Fraction; at 2019-05-13 OUTC

Modification of liquid/ice partition function:

- ARPEGE: LWC at too high altitude
- LMDZ: LWC well localized but too small

Main results outlooks

Conclusion:

- Cannot compare directly models and DARDAR: need a post-processing on mask to focus on proper area
- Liquid water occurrences:
 - Under-estimation at very negative temperature (< -40°C)
 - Under-estimation at moderate negative temperature (- 15°C , 0°C) and low distance to cloud top (0-600m)
 - Over-estimation at moderate negative temperature (- 15°C , 0°C) and high distance to cloud top (600-2000m)
 - Models do not consider any dependence on distance to cloud top
 - Better with function depending on temperature and distance to cloud top
- Better IWC and LWC with LMDZ
- Changing the liquid/ice partition function in ARPEGE:
 - Decreases IWC
 - Allows supercooled liquid water at higher altitude
- Changing the liquid/ice partition function in LMDZ:
 - Increases IWC
 - Too small LWC but well localized

Outlooks:

• Better estimate IWC and LWC threshold for mask on water content

Thank you for your attention