

Réunion ANR DIP-NAWDEX 2020

Diabatic processes in the Warm Conveyor Belt of the Stalactite Cyclone

Sensitivity to the two deep convection schemes in ARPEGE Mervl WIMMER

Centre National de Recherches Météorologiques 25/02/2020, Toulouse

G. Rivière, P. Arbogast, J.-M. Piriou, J. Delanoë, Q. Cazenave, J. Pelon, C. Labadie

Stalactite Cyclone

Geopotential at 500 hPa and

Mean Sea Level Pressure

MODIS, Nasa Worldview Application

ARPEGE-EPS (cy41.op1)

NWP:

- Resolution : 10km on France, 20km on Islande (TL798 C2.4)
- Level : 90 from 14m to 50km (1hPa)
- Time step : 514,3s
- Initial Condition : ARPEGE analysis of the 01/10/2016 at 12h UTC

Outputs :

- Resolution : 0,5°
- Level : model grid
- Time step : 15min
- Heating and PV tendencies

Bougeault, 1985 (B85)

• Mass-Flux scheme

• Closure : moisture

Piriou et al, 2007 (PCMT)

- Mass-Flux scheme
- Closure : CAPE
- Microphysic and transport schemes
- Strong entrainment

Shallow convection : KFB (Bechtold et al. 2001) // PMMC (Pergaud et al. 2009)

Influence of these two deep convection schemes on the Stalactite Cyclone WCB

Research questions

• Along the flight track, in particular in the WCB region, what are the differences in PV and wind between the two convection schemes ?

• Which scheme is closer to the observations ?

• What are the difference between the two convection scheme in the upper level ridge building ?

200

Pressure (hPa)

Warm Conveyor Belt – Flight F7

Trajectories : -24h / +24h

WCB : -300hPa in 24h for every 24h in 48h of trajectory + P₀>850hPa

Wind Observations from RADAR / Model

Observations

Link between PV and wind

PMMC

UNIVERSITÉ TOULOUSE III

Different heating in the liquid phase

METEO FRANCE

UNIVERSITÉ TOULOUSE III PAUL SABATIER

Evolution in time of the heating

Vertical profile of mean heating and \dot{PV} along WCB trajectories

Trajectories below the heating

Lower Heating -> many trajectories in the PV < 0 part

Separation anticyclonic/cyclonic trajectories

Mean direction during 3h -> to the left : cyclonic -> to the right : anticyclonic

ANR DIP-NAWDEX 2020

Heating budget for anticyclonic trajectories above 315K

Heating in ice phase from parametrization with B85

Ridge Building

Trajectories between 317-323K (+36h)

Differences between B85/PCMT

B85

- Upper Heating
- Ice phase heating (higher IWC)
- In the flight:
 - Trajectories are still below the heating
 - Still production of PV
- After the flight:
 - Heating due to ice phase
 - Higher and more trajectories which bring
 PV in high altitude
 - Higher and stronger anticyclone at later stage

PCMT

- Earlier and lower Heating
- Liquid phase heating
- In the fligth:
 - Trajectories inside the heating
 - More destruction of PV
- After the flight:
- Less trajectories in upper levels
- Weaker anticyclone at later stage

Perspectives

Short-term: (article)

- Improve heating and PV budget
- Create generic WCB trajectories (from warm sector)

Long-term:

- Study other flights (-> Gwendal Rivière)
- Use other convection schemes (new PCMT, Tiedke)

Vertical profile of mean heating and \dot{PV} along WCB trajectories

METEO FRANCE Integrated heating during 12h before the flight

Finite differences $(\theta(t+15mn)-\theta(t-15mn))$ $+u\frac{\Delta\theta}{\Delta x}+v\frac{\Delta\theta}{\Delta y}+\omega\frac{\Delta\theta}{\Delta P}\bigg)dt$

UNIVERSITÉ TOULOUSE III PAUL SABATIER

 $\int \dot{\theta} dt$ from DDH

18

-20

Heating [K/h]

¹⁹

Thank you for your attention

TEMPERATURE BUDGET (K/day) , FCST (fdiff2.lfa)

BASE 2016-10-01 21:30 ECH 0.25 H, 1 dom., 90 niv.

Tendance de theta en 15 mn, (lon,lat)=(-23.26692712,43.27491477) DHFDLARPE+0076.ren.mang >>> DHFDLARPE+0078.ren.mang

PV budget

12h before the flight, common WCB trajectories

Vertical profile of mean heating and \dot{PV} along S2 WCB trajectories

 $\frac{\partial \theta_{GRIB}}{\partial t}$

 $\partial \theta_{DDH}$ ∂t

24

during the entire trajectories

Integrated heating along the total length of trajectories

Heating budget 12h before the flight

PV budget 12h before the flight

ANR DIP-NAWDEX 2020

Number of trajectories > 315K

