

The impact of deep convection schemes of a global atmospheric model on the warm conveyor belt and jet stream of NAWDEX IOP6

Meryl WIMMER[†] and Gwendal RIVIERE^{*}

[†]*Centre National de Recherches Météorologiques, Toulouse* ^{*}*Laboratoire de Météorologie Dynamique, Paris*

P. Arbogast, J.-M. Piriou, J. Delanoë, Q. Cazenave, J. Pelon, C. Labadie

NAWDEX workshop: 8 March 2021

Main questions

• How different are Warm Conveyor Belts between runs with parametrized deep convection and without ?

• How do distinct deep convection schemes differ in the representation of WCBs ?

• What is the impact of parametrized convection on jet stream in the WCB outflow region ?

• What are the forecast errors in the representation of the jet stream for the different runs with and without parametrized convection ?

Model and set up of the simulations

Model: global operational model Arpege

- <u>Model resolution</u>: T798 with stretching \rightarrow 10km over France, 20km on Iceland
- <u>Output resolution</u>: lon x lat: 0.5° x 0.5°
- <u>3 simulations</u> differing only on deep convection representation

Bougeault, 1985 B85

- Mass-flux scheme
- Closure in humidity

Piriou et al, 2007 PCMT

- Mass-flux scheme
- Closure in CAPE
- Linked to microphysics and transport schemes
- Strong entrainment

used in ARPEGE-CLIMAT

No parametrized deep convection NoConv

Case study: IOP6 – Stalactite Cyclone

Geop 500 hPa (shadings) SLP (contour)

Computation of Lagrangian trajectories

Computation of Lagrangian trajectories starting in the warm sector at the initial time: 12h UTC 1 October Criterion : if exceeds 300 hPa ascents within 24h

Averaged quantities along trajectories

• Slightly more WCBs in NoConv than in runs with parametrized convection

- No drastic differences in the mean pressure or potential temperature
- PV shows more differences: B85 has a more important PV decrease at the end

Nber of trajectories satisfying a criterion on ascents

Fastest ascents for the run without convection scheme

Early times (t0+9h) and fast ascents (100 hPa/2h)

- Shadings: vertically averaged heating rate $\dot{\theta}$
- Contours: 850-mb θ

K/h

2.4

1.8

1.2

3.0

2.4

1.8

1.2

3.0

2.4

1.8

1.2

NoConv

PCMT

20°W

20°W

20°W

B85

Stronger, less homogeneous heating rate without convection scheme

Early times (t0+9h) and fast ascents (100 hPa/2h)

- Shadings: vertically averaged heating rate $\dot{\theta}$
- Contours: 850-mb θ
- WCB with ascents 100hPa/2h

Stronger, less homogeneous heating rate without convection scheme

Later times (t0+24h) and moderate ascents (25 hPa/2h)

Later times (t0+24h) and moderate ascents (25 hPa/2h)

Later times (t0+24h) and moderate ascents (25 hPa/2h)

PV anomalies at 300 hPa at t=24h

Wind speed at 300 hPa at t=24h

Wind speed at 300 hPa at t=24h

Wind speed vertical profiles along Flight 6

Wind speed anomalies with respect to observations

Wind speed forecast error after 30h

Conclusion

- NoConv: sooner stronger heating, more isolated regions, more rapid ascents than B85 and PCMT ahead of the cold front
- More sustained ascents in B85 than PCMT and NoConv
- PCMT has an intermediate behavior between B85 and NoConv.
- More PV desctruction in WCB outflow region in B85 than PCMT and NoConv.
- The more active dynamics in the upper troposphere in B85 is consistent with observations and (re)-analysis but too strong (consistent with IWC observations, not shown).

Outlook: Comparison with Tiedtke (1993) scheme used in IFS

Additional slides

Later times (t0+24h)

PV tendencies along trajectories

Ascending velocities

More rapid ascents in **NoConv** than **B85** at the time of maximum ascents but more sustained ascents in B85. **PCMT** is in between.

Heating and PV tendencies along trajectories

Consistency between heating rate fields computed with finite differences and variations in potential temperature along trajectories

Heating and PV tendencies along trajectories

Heating and PV tendencies budgets

Heating and PV tendencies budgets (t0+24h)

Heating and PV tendencies budgets (t0+24h), 50N-52N

Understanding the negative PV tendency due to horizontal gradient of heating rate along the cold front

Eulerian Heating rate budget after 24h

