

Workshop NAWDEX 2019

Diabatic processes in the Warm Conveyor Belt of the Stalactite Cyclone

Sensitivity to the two convective parametrization schemes in ARPEGE

Meryl WIMMER

Centre National de Recherches Météorologiques 27/03/2019, Toulouse

P. Arbogast, G. Rivière, J.-M. Piriou, J. Delanoë, Q. Cazenave, J. Pelon, C. Labadie

Stalactite Cyclone

Geopotentiel

Geopotential at 500 hPa and

Mean Sea Level Pressure

MODIS, Nasa Worldview Application

ARPEGE (cy41.op1)

- NWP :
 - Resolution : 10km on France, 20km on Islande (TL798 C2.4)
 - Level : 90 from 14m to 50km (1hPa)
 - Time step : 514,3s
 - From ARPEGE analysis of the 01/10/2016 at 12h UTC
- Output :
 - Resolution : 0,5°
 - Level : model grid
 - Time step : 15min
 - Heating and PV tendencies

Convection scheme in ARPEGE

Bougeault, 1985 (B85)

• Mass-Flux scheme

METEO FRANCE

TOULOUSE III

- Closure : moisture
- Shallow convection : KFB (Bechtold et al. 2001)

Piriou et al, 2007 (PCMT)

- Mass-Flux scheme
- Closure : CAPE
- Shallow convection : PMMC09 (Pergaud et al. 2009)
- Microphysic and transport schemes
- Strong entrainment

Influence of these two convection schemes on the Stalactite Cyclone WCB

Wind Observations from RADAR / Model

Observations

Model

Wind Observations from RADAR / Model

Observations

Model

PV and wind anomalies in the WCB

02/10/2016 at 15h UTC (+27h)

Difference of PV along the flight

Explain PV anomalies \longrightarrow WCB trajectories

🖤 🔜 🌊 🥯 Warm Conveyor Belt – Flight F7

Trajectories : -24h / +24h

WCB : -300hPa in 24h for every 24h in 48h of trajectory + P₀>850hPa

Heating budget on the total length of trajectories

METEO FRANCE

UNIVERSITÉ TOULOUSE III PAUL SABATIER

METEO FRANCE

UNIVERSITÉ TOULOUSE III PAUL SABATIER

Link between heating and PV

 $\Delta \theta$

Differences between B85/PCMT

B85

- Upper Heating
- Ice phase heating
- PV + +
- $\Delta PV > 0$ in the flight

PCMT

- Earlier Heating
- Liquid phase heating
- PV +
- $\Delta PV < 0$ in the flight

Impact on the uperlevel anticyclone

anticyclonic/cyclonic trajectories

02/10/2016 at 18hUTC

03/10/2016 at 2hUTC

PV and final pressure distribution

25

median

] quartile

PCMT

— decile

mean

Differences between B85/PCMT

B85

- Upper Heating
- Ice phase heating
- PV + +
- $\Delta PV > 0$ in the flight
- $\Delta PV > 0$ in the anticyclone : +
- Final Pressure : -
- PV > 320 K : +

PCMT

- Earlier Heating
- Liquid phase heating
- PV +
- $\Delta PV < 0$ in the flight
- $\Delta PV > 0$ in the anticyclone : ++
- Final Pressure :+
- PV > 320 K : -

Conclusion and perspectives

- Conclusion
 - Cumulated PV in the WCB explains PV difference along the flight
 - Difference due to microphysic
 - $\Delta PV > 0 : + \text{ in B85}$
 - PV anomalie in high altitude due to WCB
- Perspectives
 - Improve heating and PV budget
 - Study other flights (-> Gwendal Rivière)
 - Use other convection schemes (new PCMT, Tiedke)

Thank you for your attention

Backward trajectories

PV budget: 12h before the flight $\Delta PV = \int \sum_{i} P \dot{V}_{i} dt$ PCMT ΔPV

